Heavy-Flavor Measurements with the PHENIX Experiment at RHIC

Ralf Averbeck

State University of New York at Stony Brook

for the PHENIX Collaboration

Eight International Conference on Nucleus-Nucleus Collisions Moscow, Russia, June 17-21, 2003

Outline

Open charm physics

The PHENIX experiment

Open charm measurements

single electrons from charm decays (c \rightarrow D \rightarrow e + X) in Au+Au collisions at $\sqrt{s_{NN}}$ = 130 GeV and 200 GeV

Charmonium physics

J/Ψ production measurements

$$J/\Psi \rightarrow \mu^+ \mu^-$$
, $e^+ e^-$ in p+p and Au+Au at $\sqrt{s_{NN}} = 200$ GeV

Open charm physics

charm production in heavy-ion collisions

production mainly via gg fusion in earliest stage of collision

sensitive to initial gluon density

additional thermal production at very high temperature \rightarrow enhancement?

sensitive to initial temperature

propagation through dense (deconfined?) medium

energy loss by gluon radiation? \rightarrow softening of D-meson spectra?

sensitive to state of nuclear medium

how to measure open charm

direct reconstruction of charm decays (e.g. $D^0 \rightarrow K^- \pi^+$)

- ideal but very challenging
- determine contribution of semi leptonic charm decays (e.g. $D^0 \rightarrow K^- l^+ v_e$) to single lepton and lepton pair spectra
 - alternative, indirect approach

The PHENIX experiment

only RHIC experiment optimized for lepton measurements

electrons: two central arms electron measurement in range: $|\eta| \leq 0.35$ $p \geq 0.2 \; GeV/c$

muons: two forward arms muon measurement in range: $1.2 < |\eta| < 2.4$ $p \ge 2 \; GeV/c$

Two central electron/photon/hadron spectrometers

Two forward muon spectrometers

Inferring charm production: cocktail method

inclusive e[±] spectra from Au+Au at 130 GeV

use available data to establish "cocktail" of e[±] sources

dominated by measured π^0 and photon conversions

excess above cocktail increasing with p_T

expected from charm decays

subtract cocktail from data attribute excess to open charm

PHENIX: PRL 88(2002)192303

Electron spectra from Au+Au at 130 GeV

compare excess e[±] spectra with PYTHIA open charm calculations

PYTHIA tuned to fit SPS, FNAL, ISR data (√s<63 GeV)

scale to Au+Au using the number of binary collisions

reasonable agreement in min. bias AND central collisions between data and PYTHIA

corresponding charm cross section per binary collision from data

$$\sigma_{c\overline{c}}^{0-10\%} = 380 \pm 60 \pm 200 \mu b$$

$$\sigma_{c\overline{c}}^{0-92\%} = 420 \pm 33 \pm 250 \mu b$$

Systematic trends with collision energy

assuming binary collision scaling, PHENIX data are consistent with the \sqrt{s} systematics (within large uncertainties)

Inferring charm production: converter method

Au+Au at $\sqrt{s_{NN}} = 200$ GeV measure the e[±] spectrum from photonic sources $(\gamma, \pi^0, \eta, ...)$ by adding a photon converter to PHENIX subtract the photonic spectrum from the total to

subtract the photonic spectrum from the total to produce e[±] spectrum from non-photonic sources non-photonic e[±] yield at 200 GeV

larger than at 130 GeV

consistent with PYTHIA calculation, assuming binary scaling: $\sigma_{c\bar{c}}(130~{\rm GeV})=330~\mu b$ and $\sigma_{c\bar{c}}(200~{\rm GeV})=650~\mu b$

large systematic uncertainty due to material thickness without converter (to be reduced in final result)

Centrality dependence

PHENIX data are consistent with the PYTHIA charm spectrum scaled by the number of binary collisions in all centrality bins!

Charmonium (J/Ψ) physics

interest in high energy heavy-ion collisions possible signature of the deconfinement phase transition J/Ψ yield can be

- suppressed, because of Debye screening of the attractive potential between c and \bar{c} in the deconfined medium
- enhanced, because of $c\bar{c}$ coalescence as the medium cools

important to measure J/ Ψ in p+p and d+Au to separate "normal" nuclear effects

shadowing

nuclear absorption in cold matter

J/Y measurements in leptonic decay channels

$$J/\Psi \rightarrow e^+ e^-$$
 and $J/\Psi \rightarrow \mu^+ \mu^-$ in p+p at $\sqrt{s} = 200 \ GeV$ $J/\Psi \rightarrow e^+ e^-$ in Au+Au at $\sqrt{s_{NN}} = 200 \ GeV$

J/\P production: establishing a p+p baseline

p+p collisions at $\sqrt{s} = 200$ GeV clear J/Y signals seen in both central and muon arms resolution in agreement with expectations

J/Ψ in p+p: kinematic distributions

transverse momentum

combination of electron and muon results phenomenological and exponential fits

$$\langle p_T \rangle = 1.80 \pm 0.23 \text{ (stat)} \pm 0.16 \text{ (sys)} \text{ GeV/c}$$

Color Singlet Model underpredicts the cross section

Color Octet Model agrees reasonably with data

rapidity

integrated cross section

 3.98 ± 0.62 (stat) ± 0.56 (sys) ± 0.40 (abs) μb estimated B decay feed down contribution: < 4% (at 200 GeV)

Comparison with other experiments

phenomenological fit for average p_T : p = 0.531, q = 0.188 cross section well described by Color Octet Model

$J/\Psi \rightarrow e^+e^-$ in Au+Au collisions at $\sqrt{s_{NN}} = 200$ GeV

J/Y absorption pattern as observed at SPS (NA50: PLB477(2000)28) normalized to PHENIX p+p measurement

Model comparisons

models that predict enhancement relative to binary collision scaling are disfavored

no discrimination between models that lead to suppression

Summary

open charm production at RHIC

consistent with binary collision scaling of PYTHIA calculation charm enhancement by factor ~3 inferred by NA50 at SPS

- no large effect observed at RHIC

suppression of high p_T hadrons by factor ~3-5 observed at RHIC

- − no large effect observed in e[±] from charm decays
- possible explanations:
 - dead cone effect (Y.L. Dokshitzer, D.E. Kharzeev PLB 519(2001)199)
 - hydrodynamic flow of charm (S. Batsouli et al. PLB 557(2003)26)

- ...

J/Y production at RHIC

baseline established in p+p collisions

- results follow smoothly upon lower \sqrt{s} data and phenomenological extrapolations

present data disfavor strong enhancement scenarios in Au+Au

Outlook

open charm production at RHIC

significant reduction of sys. errors possible in e[±] analysis replace PYTHIA reference by measurement from p+p independent cross checks: μ^{\pm} data and lepton-pair data d+Au measurement done to establish "cold matter" reference

J/Y production at RHIC

d+Au measurement done to study "normal" nuclear effects

high statistics Au+Au data are needed!

